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Introduction

● Robotic perception requires computer vision as 
well as other sensing means.

● The robotic agent can build its own 
representation of the world.

● Robot vision includes:
● Object Tracking

● Visual Simultaneous Localization and Mapping (SLAM)

● Both OT and SLAM use filtering



Image analysis – 1

● Feature extraction



Image analysis – 2

● Object detection



Object Tracking

● Perform space-time filtering
● Associate instances of objects over time



The data association problem

● Problem which arises when tracking multiple 
objects/features

● Good data association needs good uncertainty 
estimation

● Under-estimation may lead to complete 
divergence of the filter

● Over-estimation may impose the use of expensive 
techniques for discriminate against different 
objects



Error sources

● Errors in detection can be principally due to:
● Detector precision
● Inaccurate estimate of camera parameters

● At detection time, each detection is affected by an 
error with zero mean and std. deviation σerr

● Camera calibration is performed only once
● Thus, calibration mistakes 'polarize' the error 

during detection



Common assumpions

● It is commonly assumed that:
● Detector errors (i.e. 2D image points) are normally 

distributed
● Calibration errors are normally distributed

● We focus on the demonstration of the second 
assumption

● It is not straightforward because of the non-
linearity of the calibration process



The camera model



The camera model

O – Optic center
R – Image center



The camera model

● Looking from the Y axis we can write:

● Similarly we can write:



Camera projection
● The projection is composed by:

● a roto-translation to align the 
world frame reference with the 
camera

● a projection performed by the 
camera matrix

● The parameters of the roto-translation are called the 
extrinsic parameters

● The parameters of the projection are called intrinsic 
parameters



The camera matrix

● (u0,v0) – coordinates of the principal point
● α and β – scale factors in image U and V axes
● c – skewness parameter



Camera calibration

● Procedure which estimates intrinsic and extrinsic 
camera parameters

● Different approaches in the 90's, e.g. DLT
● In 1999 Zhengyou Zhang proposed a new, very 

flexible method
● It became a milestone in camera calibration
● Jean-Yves Bouguet refined this method and 

developed libraries for OpenCV and Matlab



Calibration procedure – Zhang

● Very flexible technique
● Unlike former methods it does not require 

expensive equipment
● It only requires the camera to observe a planar 

pattern shown at a few differen orientations
● Two steps:

● Closed form solution
● Non-linear refinement (maximum likelihood)



Zhang – Closed-form solution

● Estimation of the homography H between the 
model plane and its image



Zhang – Constraints and definitions



Zhang – Parameters extraction 



Zhang – Solving the system

● This system can be solved with SVD
● The solution is the right singular vector of V 

associated with the smallest singular value
● Once b is estimated, intrinsic and extrinsic 

parameters can be readily extracted



Zhang – Refinement

● Due to noise and imperfect modelization, the closed 
form solution is very rough

● It can be refined through maximum likelihood inference

● Non-linear minimization problem → Levenberg-
Marquardt algorithm

● Use of the closed-form solution as an initial guess 



Calibration procedure – Bouguet

● In Zhang's method there is no information about 
the error on the estimated parameters

● In the OpenCV library there is no information 
about the error on the estimated parameters

● In Matlab, Bouguet added to the Toolbox Calib 
an analysis of the 'residual' error

● It is calculated as the error between the measured 
image points and the re-projected ones



Calibration procedure – Bouguet

● Assuming that this error is normally distributed, it is 
described with N(0,σerr)

● The errors on the calibration parameters are also 
assumed to be normally distributed

● Thus they are computed by propagating σerr

● Propagation is done by linearizing the projection 
function with a first order expansion

● This choice may generate:
● Under-estimation due to linearization
● Under-estimation due to 'unfortunate' calibration set



Our work

● We first prove that the error on the projection 
parameters is actually normally distributed

● Secondly we propose a method for calculating the 
true error distribution

● Our method enables the calibration procedure to 
take into account an a-priori information about 
the measure error



Proving the normality

● We use a Particle Transform to prove that the 
error is normally distributed

● In particular, given an ideal calibration set:
● We generate 2,000 particles (noisy calibration sets) by 

adding gaussian noise to the 2D points
● Each particle is then used to perform a calibration 

with the OpenCV library
● The resulting 2,000 calibration results show that the 

parameters are affected by an error which is normally 
distributed 



Proving the normality



Proving the normality



True error distribution

● Once we proved the normality of the projection 
parameters, we do not need the (computationally 
expensive) Particle Transform any more

● We can now use a transform which works well 
with normal distributions

● We propose the use of the Unscented Transform
● It can be used to propagate the a-priori 

knowledge through the calibration procedure



Using the Unscented Transform

● Advantages:
● We do not need to generate tousands of particles and 

to make tousands of calibrations
● We apply the calibration procedure only 2N times on 

a lightly modified calibration set
● Instead of using the 2D points observed by the 

detector, we use them ± σdetector

● The 2N calibration results give us the correct 
description of the error on the projection parameters



Pros and Cons

● Pros:
● We can take into account the uncertainty of the 

detector
● Particular cases (e.g. high lens distortion) will be well 

handled (radial distortion model uses 6th order 
polinomials → bad linearization)

● Little computational overhead

● Cons:
● For small σdetector the results may not be significantly 

different from the original method



Results

● Matlab Toolbox Calib procedure



Results

● Our calibration procedure (σdetector = 0.25)



Conclusions

● We numerically proved that the error on the projection 
parameters is normally distributed

● We proposed the use of the Unscented Transform instead 
of the Particle Transform for error propagation

● The proposed method is only a little slower than the 
original (highly parallelizable)

● The proposed method can take into account the a-priori 
uncertainty of the detector

● The proposed method gives the true error distribution, 
avoiding the linearization of the projection function
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